Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Geometrical prediction of maximum power point for photovoltaics

Identifieur interne : 000120 ( Main/Repository ); précédent : 000119; suivant : 000121

Geometrical prediction of maximum power point for photovoltaics

Auteurs : RBID : Pascal:14-0072207

Descripteurs français

English descriptors

Abstract

It is important to drive solar photovoltaic (PV) system to its utmost capacity using maximum power point (MPP) tracking algorithms. This paper presents a direct MPP prediction method for a PV system considering the geometry of the I-V characteristic of a solar cell and a module. In the first step, known as parallelogram exploration (PGE), the MPP is determined from a parallelogram constructed using the open circuit (OC) and the short circuit (SC) points of the I-V characteristic and Lagrangian interpolation. In the second step, accurate values of voltage and power at the MPP, defined as Vmp and Pmp respectively, are decided by the Lagrangian interpolation formula, known as the Lagrangian interpolation exploration (LIE). Specifically, this method works with a few (V, I) data points instead most of the MPP algorithms work with (P, V) data points. The performance of the method is examined by several PV technologies including silicon, copper indium gallium selenide (CIGS), copper zinc tin sulphide selenide (CZrSSe), organic, dye sensitized solar cell (DSSC) and organic tandem cells' data previously reported in literatures. The effectiveness of the method is tested experimentally for a few silicon cells' I-V characteristics considering variation in the light intensity and the temperature. At last, the method is also employed for a 10 W silicon module tested in the field. To testify the preciseness of the method, an absolute value of the derivative of power (P) with respect to voltage (V) defined as (dP/dV) is evaluated and plotted against V. The method estimates the MPP parameters with high accuracy for any kind of PV technologies with different environmental conditions. In future, this method proposes a guide line to construct control scheme for real-time MPPT tracking in the PV system.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0072207

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Geometrical prediction of maximum power point for photovoltaics</title>
<author>
<name sortKey="Kumar, Gaurav" uniqKey="Kumar G">Gaurav Kumar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Electrical Engineering Department, S.V. National Institute of Technology</s1>
<s2>Surat 395007, Gujarat</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Surat 395007, Gujarat</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Panchal, Ashish K" uniqKey="Panchal A">Ashish K. Panchal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Electrical Engineering Department, S.V. National Institute of Technology</s1>
<s2>Surat 395007, Gujarat</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Surat 395007, Gujarat</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0072207</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0072207 INIST</idno>
<idno type="RBID">Pascal:14-0072207</idno>
<idno type="wicri:Area/Main/Corpus">000125</idno>
<idno type="wicri:Area/Main/Repository">000120</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0306-2619</idno>
<title level="j" type="abbreviated">Appl. energy</title>
<title level="j" type="main">Applied energy</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electric power production</term>
<term>Interpolation</term>
<term>Photovoltaic cell</term>
<term>Photovoltaic system</term>
<term>Solar energy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dispositif photovoltaïque</term>
<term>Production énergie électrique</term>
<term>Système photovoltaïque</term>
<term>Energie solaire</term>
<term>Interpolation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is important to drive solar photovoltaic (PV) system to its utmost capacity using maximum power point (MPP) tracking algorithms. This paper presents a direct MPP prediction method for a PV system considering the geometry of the I-V characteristic of a solar cell and a module. In the first step, known as parallelogram exploration (PGE), the MPP is determined from a parallelogram constructed using the open circuit (OC) and the short circuit (SC) points of the I-V characteristic and Lagrangian interpolation. In the second step, accurate values of voltage and power at the MPP, defined as V
<sub>mp</sub>
and P
<sub>mp</sub>
respectively, are decided by the Lagrangian interpolation formula, known as the Lagrangian interpolation exploration (LIE). Specifically, this method works with a few (V, I) data points instead most of the MPP algorithms work with (P, V) data points. The performance of the method is examined by several PV technologies including silicon, copper indium gallium selenide (CIGS), copper zinc tin sulphide selenide (CZrSSe), organic, dye sensitized solar cell (DSSC) and organic tandem cells' data previously reported in literatures. The effectiveness of the method is tested experimentally for a few silicon cells'
<sup> </sup>
I-V characteristics considering variation in the light intensity and the temperature. At last, the method is also employed for a 10 W silicon module tested in the field. To testify the preciseness of the method, an absolute value of the derivative of power (P) with respect to voltage (V) defined as (dP/dV) is evaluated and plotted against V. The method estimates the MPP parameters with high accuracy for any kind of PV technologies with different environmental conditions. In future, this method proposes a guide line to construct control scheme for real-time MPPT tracking in the PV system.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0306-2619</s0>
</fA01>
<fA02 i1="01">
<s0>APENDX</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. energy</s0>
</fA03>
<fA05>
<s2>119</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Geometrical prediction of maximum power point for photovoltaics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KUMAR (Gaurav)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PANCHAL (Ashish K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Electrical Engineering Department, S.V. National Institute of Technology</s1>
<s2>Surat 395007, Gujarat</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>237-245</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17162</s2>
<s5>354000505777750220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0072207</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>It is important to drive solar photovoltaic (PV) system to its utmost capacity using maximum power point (MPP) tracking algorithms. This paper presents a direct MPP prediction method for a PV system considering the geometry of the I-V characteristic of a solar cell and a module. In the first step, known as parallelogram exploration (PGE), the MPP is determined from a parallelogram constructed using the open circuit (OC) and the short circuit (SC) points of the I-V characteristic and Lagrangian interpolation. In the second step, accurate values of voltage and power at the MPP, defined as V
<sub>mp</sub>
and P
<sub>mp</sub>
respectively, are decided by the Lagrangian interpolation formula, known as the Lagrangian interpolation exploration (LIE). Specifically, this method works with a few (V, I) data points instead most of the MPP algorithms work with (P, V) data points. The performance of the method is examined by several PV technologies including silicon, copper indium gallium selenide (CIGS), copper zinc tin sulphide selenide (CZrSSe), organic, dye sensitized solar cell (DSSC) and organic tandem cells' data previously reported in literatures. The effectiveness of the method is tested experimentally for a few silicon cells'
<sup> </sup>
I-V characteristics considering variation in the light intensity and the temperature. At last, the method is also employed for a 10 W silicon module tested in the field. To testify the preciseness of the method, an absolute value of the derivative of power (P) with respect to voltage (V) defined as (dP/dV) is evaluated and plotted against V. The method estimates the MPP parameters with high accuracy for any kind of PV technologies with different environmental conditions. In future, this method proposes a guide line to construct control scheme for real-time MPPT tracking in the PV system.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D2</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Production énergie électrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electric power production</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Producción energía eléctrica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système photovoltaïque</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Photovoltaic system</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema fotovoltaico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Energie solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solar energy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Energía solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Interpolation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Interpolation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Interpolación</s0>
<s5>05</s5>
</fC03>
<fN21>
<s1>097</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000120 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000120 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0072207
   |texte=   Geometrical prediction of maximum power point for photovoltaics
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024